Extraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping

نویسندگان

  • Masaki Ishii
  • Kazuhito Sato
  • Hirokazu Madokoro
  • Makoto Nishida
چکیده

This paper proposes a generation method of a subject-specific Facial Expression Map (FEMap) using the Self-Organizing Maps (SOM) of unsupervised learning and Counter Propagation Networks (CPN) of supervised learning together. The proposed method consists of two steps. In the first step, the topological change of a face pattern in the expressional process of facial expression is learned hierarchically using the SOM of a narrow mapping space, and the number of subject-specific facial expression categories and the representative images of each category are extracted. Psychological significance based on the neutral and six basic emotions (anger, sadness, disgust, happiness, surprise, and fear) is assigned to each extracted category. In the latter step, the categories and the representative images described above are learned using the CPN of a large mapping space, and a category map that expresses the topological characteristics of facial expression is generated. This paper defines this category map as an FEMap. Experimental results for six subjects show that the proposed method can generate a subject-specific FEMap based on the topological characteristics of facial expression appearing on face images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Synthesis of human facial expressions based on the distribution of elastic force applied by control points

Facial expressions play an essential role in delivering emotions. Thus facial expression synthesis gain interests in many fields such as computer vision and graphics. Facial actions are generated by contraction and relaxation of the muscles innervated by facial nerves. The combination of those muscle motions is numerous. therefore, facial expressions are often person specific. But in general, f...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Multimedia

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008